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Neural Network Objects (NNO) is a C++ class library that implements the most popular 
conventional neural networks together with novel incremental models that have been invented 
at Bochum University. The package is publicly available and has proven versatile in a broad 
range of applications over the past years. In the context of the Pico Analysis Framework NNO 
has now been completely revised in order to take full advantage of the ROOT framework for 
data management and graphics.  
 
 

  
 
Fig.1: Live updating graphics to control the progress of network training 
The example shows the network output for training and test sample (upper row) and the 
corresponding error function as the training cycles commence. 
                                                 
1 Now director of  software development at Eyematic Interfaces Inc., LA 



 

 

 

Architecture 
 
At the time being the package comprises  
 

Supervised Training Models 

Multi-Layer Perceptron (TMLP, TXMLP) 
Fisher Discriminant (TFD) 
Supervised Growing Cell Structure (TSGCS) 
Supervised Growing Neural Gas (TSGNG)  
Neural Network Kernel (TNNK) 

Unsupervised Training Models
Learning Vector Quantisation (TLVQ) 
Growing Cell Structure (TGCS) 
Growing Neural Gas (TGNG)  

The design foresees that all models are derived from the same abstract base class 
VNeuralNet. The common base class enforces a unique interface to data management, 
training and recall cycles and graphics operations at one central place. VSupervisedNet and 
VUnsupervisedNet both inherit from VNeuralNet and take care of the different learning 
paradigms. In addition specific implementations of the networks can utilize a plotter to 
produce a live updating graphics window to control the training progress: The abstract 
VNeuralNetPlotter interface allows to plug in a graphics engine, like the default 
TSimpleNeuralNetPlotter. 
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Fig.2: NNO class hierarchy 
All networks implement the VNeuralNet interface and use a VNeuralNetPlotter to show their 
training progress. 



 

 

Implementation 
The VNeuralNet abstract interface defines the following contract for the implementation of 
specific neural network models: 

// Abstract interface for all networks
virtual void AllocNet() = 0;
virtual void InitNet() = 0;
virtual void WriteText() = 0;
virtual void WriteBinary() = 0;
virtual void ReadText() = 0;
virtual void ReadBinary() = 0;
virtual Double_t* Recall(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0;
virtual Double_t Train(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0; 

AllocNet acquires resources and is executed during network construction. InitNet sets up the 
network weight matrix. WriteText persists the network as an ASCII file, WriteBinary 
produces a binary file. The corresponding reading versions are able to regenerate a network in 
the state it was at the time when it was saved. The Recall method takes an input vector as 
parameter and returns the corresponding network output. The Train function takes a pair of 
input/output vectors, performs a Recall, modifies the weight matrix to better adapt the input 
probability density function and returns the squared error of the sample. 

Besides the abstract interface, concrete methods have been implemented to support the 
execution of training cycles and to set training parameters: 

// Training and testing
Double_t TrainEpoch(TDataServe *server, Int_t nEpoch=1);
Double_t TestEpoch(TDataServe *server);
void BalanceSamples(Bool_t yesNo = kTRUE);
virtual void SetMomentumTerm(Double_t f);
virtual void SetFlatSpotElimination(Double_t f); 

TDataServe is a mini database to support management of input/output vector relations. It 
allows to partition datasets into training and test samples, retrieve arbitrary samples and 
shuffle a data set prior to a new training cycle. TrainEpoch and TestEpoch are functions  to 
train and test networks with a complete set of vectors out of a TDataServe object. The 
BalanceSamples option allows to have equal training statistics for good and bad samples, 
independent of the number of vectors per sample. The application of a momentum term might 
lead to faster convergence in some applications by noting the direction of gradient descent, 
the flat spot elimination might improve training progress in regions where the derivatives of 
the error matrix are near zero. 

Each network implementation has to implement the abstract interface mentioned above. As an 
example for the integration of an independent neural network implementation into the context 
of NNO we have managed to support J.P. Ernenwein�s Neural Network Kernel: The TNNK 
interface yields seamless access to the Neural Network Kernel in the scope of NNO. 



 

 

NetworkTrainer 
Network training requires to identify pairs of input vectors and output vectors out of a dataset 
of good and bad samples to describe the problem at hand. It usually takes a certain amount of 
time to  select suiting quantities and assemble corresponding training and test files prior to 
network training and write a corresponding training program or macro. However, it turns out 
that ROOT is performing enough to allow for interactive training of large networks with large 
data samples out of arbitrary ROOT files in one go. In that spirit a NetworkTrainer program 
has been written on the basis of the NNO package. NetworkTrainer assists to 

�� Assemble training and testing data sets out of ROOT trees 
�� Define the network architecture 
�� Define a training schedule 
�� Persist networks 
�� Generate C++ code to perform network recall 

At the time being NetworkTrainer reads an ASCII steering file when it launches (a GUI is in 
preparation). The steering file knows the following directives: 

Parameter Type 
I = input 
O = output 
H = hidden 
C = cells 

Description 

fisher vector 
(I O) Multi-layer perceptron (0 hidden layer) 

mlp vector 
(I H O) Multi-layer perceptron (1 hidden layer) 

xmlp vector 
(I H H O) Multi-layer perceptron (2 hidden layers) 

tnnk vector 
(I H H O) Multi-layer perceptron (Neural Network Kernel) 

sgng vector 
(I C O) Supervised growing neural gas  

sgcs vector 
(I C O) Supervised growing cell structures 

gng vector 
(I C) Growing neural gas 

gcs vector 
(I C) Growing cell structures 

lvq vector 
(I C) Learning vector quantization 

start int First training epoch  
stop int Last training epoch  
epoch int Number of training samples per epoch 
test int Number of test samples per epoch 
networkpath string Directory to save the trained networks 
datapath string Directory to look up data files 
file string ROOT training file containing good and bad samples 
pro string ROOT training file containing good samples (1D output only) 



 

 

con string ROOT training file containing bad samples (1D output only) 
tree string ROOT tree that acts as source to assemble the vectors 
cut string ROOT TFormula for preselection of samples 
input string Input vector, ROOT TFormulae (separated by colon) 
output string Output vector, ROOT TFormulae (separated by colon) 
transfer string Transfer function 

(TR_FERMI,TR_LINEAR,TR_LINEAR_BEND,TR_SIGMOID)
momentum float Momentum term 
scale float Global scale factor to apply to input layer 
inscale vector Scale factors to apply to input layer 
outscale vector Scale factors to apply to output layer 
autoscale bool Determine scale factors to apply to input layer 
plot bool Produce graphics output (1D output only) 
balance bool Enforce presentation of equal number of good and bad samples 

A sample steering file for training of a selector to separate different charged particles in a 
typical HEP experiment could look like the following: 

# Training of PIDSelectors with NNO 
 
#define the network topology 
xmlp 7 15 10 1 
transfer TR_FERMI 
momentum 0.2 
balance true 
plots true 
test 10000 
start 1 
stop 200 
 
#define the data source 
datapath ../Data 
networkpath ../Networks 
file PidTuple1.root 
file PidTuple2.root 
 
#set up the input layer (use branch names) 
tree PidTuple 
cut mom>0.5&&dch>0&&dch<10000 
input mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd 
autoscale true 
 
#set up the output layer (use branch names) 
#Particles pid = {electron=1,muon,pion,kaon,proton} 
output abs(pid)==3 

The example above reads two input files, assembles a data server using all samples surviving 
the cut and runs for 200 training epochs with a 7-15-10-1 multi-layer perceptron using all 
available samples. In the course of the training after each epoch a persistent network file 



 

 

NNOxxxx.TXMLP is saved into the Networks directory, where xxxx denotes the epoch 
number. At the end, NetworkTrainer produces a template recall function that can be plugged 
into another program that wants to make use of a network. For the above example the file 
RecallTXMLP.cpp looks like is shown below for illustration purposes: 

// TXMLP network trained with NNO NetworkTrainer at Fri Apr 27  
// Input parameters mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd 
// Output parameters abs(pid)==3 
// Training files: 
//../Data/PidTuple1.root 
//../Data/PidTuple2.root 
 
#include "PAFNNO/TXMLP.hh" 
 
Double_t* Recall(Double_t *invec) 
{ 
 static TXMLP net("TXMLP.net"); 
 Float_t x[7]; 
 x[0]  = 0.76594 * invec[0]; // mom 
 x[1]  = 2.21056 * invec[1]; // acos(theta) 
 x[2]  = 0.20365 * invec[2]; // svt 
 x[3]  = 2.2859 * invec[3]; // emc 
 x[4]  = 1.75435 * invec[4]; // drc 
 x[5]  = 0.00165 * invec[5]; // dch 
 x[6]  = 0.85728 * invec[6]; // ifr 
 return net.Recall(x); 
} 
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